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Computing Export Controls
“Who controls the sptee compute, controls the world”

Exclusive: Nvidia modifies H20 chip for

_ . China to overcome US export controls,
Al, National Security, sources say

RRRRRRR Mar 24,2025 | Hudson Institute

and the GlObal By Liam MOénd Brenda Goh

Technology Race: How D' P | y f S
efinitions of computing performance impac

US Export Controls billion-dollar decisions,

Define the Future of national security,

Innovation and the future of computing.

Nury Turkel How to do this accurately, fairly, and

generally?



Which computer is more performant?
By how much?

Computer A
* 1.44 Exaflop/s*

* Nvidia’s GB200 NVL72
» “The NVIDIA GB200 NVL72 is an

exascale computer in a single rack.” -

https://www.nvidia.com/en-us/data-center/ghb200-nvl72/

ComputerB
* 1.35 Exaflop/s**

* Frontier
* #2 most performant public
supercomputer
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** Dense FP64 with Linpack


https://www.nvidia.com/en-us/data-center/gb200-nvl72/
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* Data types -, .
* Bitwidths reacavs 1«
* Bitallocation (e.g. mantissa and exponent bits) L Source: Nvidia

* Encoding schemes - integer vs floats vs posits...
* Specifications (e.g. IEEE, OCP, vendor...)

* Operations
* Add, subtract, negate, multiply, divide, compare, sqgrt, tanh, ...

e Sparsity .

+ Emulation (Ozaki and beyond) Hardware:

 Noise Quantum, analog,

e Scalar vs vector vs matrix inputs neuromorphic, reversible, ...

How do we fairly measure and compare performance
across this large design space?
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What are we doing now?
What could we do now?

What can we do in the future?



VWhat are we
doing now?



Weighting Data Types by Bit Widths

F

* FP4 vs FP64

* ‘Exaflop’ computers: Frontier vs GB200 NVL72 Linear
* 64 bits > 2°* possible states Weighting
* 4 bits > 2* possible states
* Linear comparisons?
64 . .
+ 5 =1,152,921,504,606,846,976 ' Logarithmic
» Weighting

* Logarithmic comparisons?

, log2(2°%) 64 _
log2(2%) 4 16

* We use logarithms of the state space to compare across bit widths
* Bit width approximation

 U.S. Gov’t export controls use this approach




Reducing Redundant Encodings

* How many distinct states does a data type represent?

* Redundancy wastes bits/bitstrings

* “There should be no redundant bit patterns to mean the same thing; every
bit counts.” —John Gustafson

Encoded Values Encoded Values

2650 < o600

Bitstrings Bitstrings



Optimizing Data Type Usage Efficiency

e “Does this kernel need FP64, or can | use FP16, Int8, FP2,...?”
* Much existing bit inefficiency!

* Value range
* Most data spans << 300 decades

* Accuracy
* Many applications don’t always need 53 bits of relative accuracy
 Even HPL (see HPL-MxP)

| Relative accuracy (Decimal Digits)
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Innovating in Data Types and Emulation

* Block-scaled encodings
* Posits, takumes, ...
 Ozaki emulation

* Performing floating-point matmul with B|

lower-precision hardware - ¥ SPit

» Usefulwhen: oo BB e B
« High-precision performance is low A

» Data spans avery smallrange and requires A ::; S
little accuracy A 71 . 7
Split| ° C

A

Source: https://arxiv.org/pdf/2306.1197


https://arxiv.org/pdf/2306.11975
https://arxiv.org/pdf/2306.11975

What are we doing now?

* Weighing data types by their bit widths

* Log scaling of state space
* Reducing redundant value encodings

* Optimizing data type usage efficiency with smaller data types
* “Does this kernel really need FP647”

* Innovating in data types and emulation
* Block-scaled FP, Posits, Takums, Ozaki emulation, and beyond



VWhat could we
do now?



Shannon Entropy in
Brief

Uncertainty
Flipping a coin: Heads or Tails = 1 bit
Rolling a die with M faces = log,(M)

Shannon entropy (H): A measure of uncertainty

- Discrete random variable X with probability
distribution p(x)

- Measuredin bitsifb=2

Probability
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e
w

0.25

Constant
(H = 0.00 bits)

Normal

Uniform (H ~ 2.97 bits)

(H ~ 3.32 bits)

1 2 3 4 5 6 7 8 9 10
Discrete Outcome

ZP z) log, p()

reX



Reframe Effects of Redundant Encodings with Entropy

* Redundancy reduces information capturing potential
* Magnified by smaller number of bitstrings — low bit widths

Hencoding
bit_width

* Quantified with encoding efficiency: n =

* Careful when mixing linear and log scaling
* 50% bitstring redundant 4-bit encoding = 3 bits of entropy (not 2!)

* Example: IEEE-754 redundant NaN encodings

Every physteat informational bit counts!



Encoding Efficiency in Practice (NaNs only)

Float Type Bit Width Encoding Entropy Encoding Efficiency (%)

IEEE-754
IEEE-754
TF32
IEEE-754
BF16
OCP (E4M3)

|IEEE-754 (EAM3)*

OCP (E2M3)

IEEE-754 (E2M3)*

I[EEE-P3109
Posits

Takums

32
19
16
16

63.974
31.906
18.957
15.657
15.969
7.992
7.792
6
5.167
Ideal
Ideal
Ideal

99.960
99.707
99.774
97.854
99.806
99.902

100
100
100
100

*Theoretical — Does not exist.



Data Type Usage Efficiency and Info Theory

* Bits are your currency, and you allocate them as needed
 “Do |l really need FP64 for everything?”

* How to answer that analytically: Info theory
* Bitstrings for values beyond needed range go unused - 0 entropy
* Bits allocated towards excess precision are baggage
* Constant values have 0 uncertainty = 0 entropy

®000HHWH» — 000®

* Example: Using FP8 (E4M3) to encode 4-bit integer
 Bit width approximation: 8 physical bits per op to 4 = 2x performance ‘reduction’
* Info Theory: 4 bits of info to 4 - No performance impact

Info theory doesn’t ‘punish’ optimization (unlike bit width approx.)



Another Problem with Mixed Bit Field Mentality

* Float encodings unnecessarily separate value range and precision!
* Ex: BF16 vs FP16 or FP8 E4AM3 vs ESM4

* [n a purely log or purely integer format, these differences disappear
« Can exactly tradeoff accuracy €< range
* Simplifies reasoning about data types

m Log 3bit (1-8) eLog 4bit (1-16) 4Log 4bit (1-8) +Log 4bit (1-16 rescaled)
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From Quantization/Communication
to Operations



How much does a given operation reduce uncertainty?

oy S00000

* Constant inputs or outputs = None! “‘

 Compile them away

Inputs

* More output states - More!

 Some states more likely 2 Less!
* NaNs, overflow, underflow, etc

* Noisy/Error-prone HW - Less!

e Determinism matters




From Quantization/Communication to Operations

"The fundamental problem of communication is
that of reproducing at one point either exactly or
approximately a message selected at another
point”

- A Mathematical Theory of Communication (Shannon 1948)

- Generalized the concept of communication
performance

- Allowed for fair and generalized
performance evaluation

INFORMATION
SOURCE TRANSMITTER

>

MESSAGE

SIGNAL

RECEIVED
SIGNAL

NOISE
SOURCE

RECEIVER DESTINATION

-
>

MESSAGE

Fig. 1—Schematic diagram of a general communication system.



Communication: Copies inputs to outputs (identity operation)

INFORMATION
SOURCE TRANSMITTER RECEIVER DESTINATION
—— y y —
SIGNAL RECEIVED
SIGNAL
MESSAGE MESSAGE
NOISE
SOURCE
INPUT OUTPUT
INFORMATION . DATA DATA . INFORMATION
Encoding > Copy > Decoding
SOURCE DESTINATION




Expand beyond the identity: Computation

INFORMATION
SOURCE

Encoding

INPUT
DATA

> Operation

OUTPUT
DATA

>

Decoding

INFORMATION
DESTINATION



Mutual Information (l) Channel Capacity (C)

* Measures the ‘shared’ information of * Maximum Ml over possible distributions
random variables
* Considers properties of the operation and noise

* Upper bound/ideal quantity

* ‘Operational’ quantity * Application-agnostic

* Application and runtime-dependent

I(X;Y) = H(X) - H(X[Y) C=maxI(X;Y)

p(x)

H(X) H(Y)

H(X.Y)



Info Theory and Computation

Expand Shannon’s communication performance model
* |dentity operator (communication) = Arbitrary operator (computation)
* Mutual info and channel capacity naturally handle this

Flop/s = Bit/s

* Base Measure: Uncertainty reduction
* Operational: Mutual Information
* |deal/Peak: Channel capacity

Enable generalized and fair performance evaluation
* Just like communication has had for >70 years

Aligns with existing performance metrics

Every informational bit counts
(for communication, quantization, and computation)



Data Type Channel Capacity Estimation

* Estimate the channel capacity of operations
* Inputs: Every possible combination of 8-bit values
* Outputs: Add/Mult in 8 or 16-bit formats

Multiplication Addition
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Incorporate Data Type Utilization Into Tools



Information Roofline

 Extends traditional roofline

* Adds data type utilization
* Needed with today’s innovation
* Every bit counts!

* X-Axis: Arithmetic Intensity

bits
. Unitless( : Comp)

LScomm

* Y-Axis: Information Throughput
* Bits of information per second
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__________________________

® Native FP64 DGEMM
Ozaki FP64 (22 bits)

® Ozaki FP64 (29 bits)

@ Ozaki FP64 (36 bits)

TBit/s

104 |
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Information Roofline
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TF32 TC
FP64 TC
[
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Either you’re inefficiently using a data type, or you traded accuracy/range for op-throughput.
The information roofline makes this explicit.



Entropy Staircase GEMM on Nvidia H200 GPU

—®&@— Native Pipelines
« Simplify complex execution choices [l Ozaki Al

—ll— Ozaki Int8
* Native pipelines and emulation

15 [

* Quantify benefits of emulation

* Ease of ascending/descending
the entropy staircase
* Posits vs floats
* Traditional ‘mixed’ precision

104 +

N M |

0 50 100 150
Entropy Intensity

Operation Throughput




What could we do now?

* Reframe redundant value encodings with entropy loss

* Measure data type and operation performance with info. theory
* Unifies communication and computation

* Incorporate data type utilization into usable tools
* Information roofline

* Entropy staircase



VWhat could we
do In the future?



Uncorrectable Noise

* Status quo: Digital computing is nearly lossless This is reall
* Data type designers: “We don’t need to care about bit flips.” H100 GPU in space.
* Infs/NaNs/bitfields make bitflips disastrous

* Motivations for accepting error:
* Undervolting: Energy consumption €< -2 Error tradeoff
* Space-based datacenters: Radiation causing bit flips

* Shannon capacity of graphs
* Single bit flips: Hypercube

* Could digital encodings look more like neuromorphic spike trains?


https://www.datacenterdynamics.com/en/news/starcloud-1-satellite-reaches-space-with-nvidia-h100-gpu-now-operating-in-orbit/

What could we do next?

* Noise/error-tolerant formats and algorithms
* Variable-width encodings

* Dataflow optimization (hyper-localized data types/operations)

* Compare performance across hardware paradigms
e Quantum
* Neuromorphic
* Analog
* Reversible
There is still room for innovation.

When will the juice be worth the squeeze?



How will we fairly and generally measure
computing performance in the future?

* Innovation will continue
* Loss of Moore’s law/Dennard scaling

* Data type and hardware variety will grow
* How many asterisks is too many?

* *Flop/sin FP32, with sparsity, using tensor cores, emulated with Ozaki scheme 1 using two slices of Int8
* Export controls need a fundamental grounding
* HPC + Quantum/Neuromorphic/Analog/Reversible systems

We need to innovate in performance measurement and
tooling to capture the evolving hardware and data types.



Information Theory
Enables a Useful and
General Framework
for Computing
Performance

Every informational bit counts!

4-page preprint:
arxiv.org/pdf/2508.05621

mhawkins60@gatech.edu

richie@cc.gatech.edu



https://arxiv.org/pdf/2508.05621
mailto:mhawkins60@gatech.edu
mailto:richie@cc.gatech.edu

Bonus Slides!



Aspects Information Theory Explicitly Ignores

* Ease of physical implementation
* Semantics and error analysis
* Reproducibility



Max Relative Error and Logarithmic Encodings

* Logarithmic encodings are optimal*
* ...Ifusing max relative error on a bounded interval
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https://link.springer.com/article/10.1007/s11023-010-9221-z
https://link.springer.com/article/10.1007/s11023-010-9221-z
https://link.springer.com/article/10.1007/s11023-010-9221-z

Entropy Staircase

Throughput

T T ! ! ! !

- { |—@— A100
o O H200
O 8200

oo —l— B300

—— Power Law
\ oooo

\ ooooooog o

ooo oooooog
bes alalalals}

oopoooa. .\ oo
(]=]
Doooo Sjeiinieie)
0o0O0O0gg ———

0000000gpopooooo0o0oO

I 1 L L : ;

0 10 20 30 40 50 60
Entropy Intensity



(Computer) Arithmetic

* What is the ‘freedom’ or set of potential values of variable x?
e xER

* Mathematician: If x € R, infinitely many values!
« Hardware designer: If stored in FP64, ~2°* states
* HPC practitioner: [-1000, 1000] but mostly close to zero

* “All models are wrong. Some are useful”



	Slide 1: Bits on Bits:  Showcasing Next-Gen Arithmetic through Information Theory
	Slide 2: Computing Export Controls “Who controls the spice compute, controls the world”
	Slide 3: Which computer is more performant?  By how much?
	Slide 4: The Variety of Arithmetic
	Slide 5: What are we doing now?
	Slide 6: What are we doing now?
	Slide 7: Weighting Data Types by Bit Widths
	Slide 8: Reducing Redundant Encodings
	Slide 9: Optimizing Data Type Usage Efficiency
	Slide 10: Innovating in Data Types and Emulation
	Slide 11: What are we doing now?
	Slide 12: What could we do now?
	Slide 13: Shannon Entropy in Brief
	Slide 14: Reframe Effects of Redundant Encodings with Entropy
	Slide 15: Encoding Efficiency in Practice (NaNs only)
	Slide 16: Data Type Usage Efficiency and Info Theory
	Slide 17: Another Problem with Mixed Bit Field Mentality
	Slide 18: From Quantization/Communication  to Operations
	Slide 19: How much does a given operation reduce uncertainty?
	Slide 20
	Slide 21
	Slide 22: Expand beyond the identity: Computation
	Slide 23
	Slide 24: Info Theory and Computation
	Slide 25: Data Type Channel Capacity Estimation
	Slide 26: Incorporate Data Type Utilization Into Tools
	Slide 27: Information Roofline
	Slide 28: Entropy Staircase
	Slide 29: What could we do now?
	Slide 30: What could we do in the future?
	Slide 31: Uncorrectable Noise
	Slide 32: What could we do next?
	Slide 33: How will we fairly and generally measure computing performance in the future?
	Slide 34: Information Theory Enables a Useful and General Framework for Computing Performance
	Slide 35: Bonus Slides!
	Slide 37: Aspects Information Theory Explicitly Ignores
	Slide 38: Demonstration: LU Decomposition
	Slide 39: Max Relative Error and Logarithmic Encodings
	Slide 40
	Slide 41: The Scope of Standardization
	Slide 42: (Computer) Arithmetic
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: What are flop/s?
	Slide 51: Which computer is more performant?  By how much?
	Slide 52: Which computer is more performant?  By how much?
	Slide 53: The Variety of Computing
	Slide 54: The flop is dead.  Long live the flop.
	Slide 55: Same Sh…tory, Different Day
	Slide 56: These changing metrics reflect the  difficulty  in evaluating computing performance without a principled foundation.
	Slide 57: Our Proposal:  Back to Bits
	Slide 58: Inspiration from Communication
	Slide 59: Can we use information theory for computation performance evaluation?
	Slide 60
	Slide 61: Expand beyond the identity: Computation
	Slide 62: A Short Intro to Information Theory
	Slide 63: A Short Intro to Information Theory
	Slide 64: A Short Intro to Information Theory
	Slide 65
	Slide 66: Summary of Our Proposal
	Slide 67: How do you weight across bit widths?
	Slide 68: Using Logarithms is Natural
	Slide 69: Info Theory Already in Use: Redundant Encodings
	Slide 70: Redundant NaN Encodings in Practice
	Slide 71: Info Theory Already in Use:  John Gustafson’s Rules for Data Formats
	Slide 72: Bit Widths
	Slide 73: Shannon’s Framework Beyond the Identity Operator
	Slide 74: Sparsity
	Slide 75: Noise
	Slide 76: Operations
	Slide 77: Providing a Needed Framework
	Slide 78: Providing a Needed Framework
	Slide 79: Emulation: Ozaki Scheme
	Slide 80
	Slide 81: Ozaki Scheme Encourages Our Framework
	Slide 82: Communication and Computation
	Slide 83: The Importance of Agnosticism

