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Computing Export Controls
“Who controls the spice compute, controls the world”

Definitions of computing performance impact 
billion-dollar decisions, 

national security, 
and the future of computing. 

How to do this accurately, fairly, and 
generally?



Which computer is more performant? 
By how much?

Computer A
• 1.44 Exaflop/s*
• Nvidia’s GB200 NVL72

• “The NVIDIA GB200 NVL72 is an 
exascale computer in a single rack.” -
https://www.nvidia.com/en-us/data-center/gb200-nvl72/

Computer B
• 1.35 Exaflop/s**
• Frontier

• #2 most performant public 
supercomputer

* With sparse FP4 tensor cores ** Dense FP64 with Linpack

https://www.nvidia.com/en-us/data-center/gb200-nvl72/
https://www.nvidia.com/en-us/data-center/gb200-nvl72/
https://www.nvidia.com/en-us/data-center/gb200-nvl72/
https://www.nvidia.com/en-us/data-center/gb200-nvl72/
https://www.nvidia.com/en-us/data-center/gb200-nvl72/
https://www.nvidia.com/en-us/data-center/gb200-nvl72/
https://www.nvidia.com/en-us/data-center/gb200-nvl72/


The Variety of Arithmetic
• Data types

• Bit widths
• Bit allocation (e.g. mantissa and exponent bits)
• Encoding schemes - integer vs floats vs posits…
• Specifications (e.g. IEEE, OCP, vendor…)

• Operations
• Add, subtract, negate, multiply, divide, compare, sqrt, tanh, …
• Sparsity
• Emulation (Ozaki and beyond)
• Noise
• Scalar vs vector vs matrix inputs

How do we fairly measure and compare performance 
across this large design space?

Hardware:
Quantum, analog, 

neuromorphic, reversible, …

Source: Nvidia



What are we doing now?

What can we do in the future?

What could we do now?



What are we 
doing now?



Weighting Data Types by Bit Widths

• FP4 vs FP64
• ‘Exaflop’ computers: Frontier vs GB200 NVL72
• 64 bits → 264 possible states
• 4 bits → 24 possible states

• Linear comparisons?
• 264

24 = 1,152,921,504,606,846,976

• Logarithmic comparisons?
• 𝑙𝑜𝑔2(264)

𝑙𝑜𝑔2(24)
= 64

4
= 16

• We use logarithms of the state space to compare across bit widths
• Bit width approximation 

• U.S. Gov’t export controls use this approach



Reducing Redundant Encodings

• How many distinct states does a data type represent?
• Redundancy wastes bits/bitstrings

• “There should be no redundant bit patterns to mean the same thing; every 
bit counts.” – John Gustafson

<
Bitstrings Bitstrings

Encoded Values Encoded Values



Optimizing Data Type Usage Efficiency
• “Does this kernel need FP64, or can I use FP16, Int8, FP2,…?”

• Much existing bit inefficiency!

• Value range
• Most data spans << 300 decades

• Accuracy
• Many applications don’t always need 53 bits of relative accuracy
• Even HPL (see HPL-MxP)



Innovating in Data Types and Emulation

• Block-scaled encodings
• Posits, takums, …
• Ozaki emulation

• Performing floating-point matmul with 
lower-precision hardware

• Useful when:
• High-precision performance is low 
• Data spans a very small range and requires 

little accuracy

Source: https://arxiv.org/pdf/2306.11975

https://arxiv.org/pdf/2306.11975
https://arxiv.org/pdf/2306.11975


What are we doing now?

• Weighing data types by their bit widths 
• Log scaling of state space

• Reducing redundant value encodings
• Optimizing data type usage efficiency with smaller data types

• “Does this kernel really need FP64?”

• Innovating in data types and emulation
• Block-scaled FP, Posits, Takums, Ozaki emulation, and beyond



What could we 
do now?



Shannon Entropy in 
Brief

- Uncertainty
- Flipping a coin: Heads or Tails ➔ 1 bit
- Rolling a die with M faces ➔ 𝑙𝑜𝑔2 𝑀

- Shannon entropy (H): A measure of uncertainty
- Discrete random variable X with probability 

distribution p(x)
- Measured in bits if b = 2



Reframe Effects of Redundant Encodings with Entropy

• Redundancy reduces information capturing potential
• Magnified by smaller number of bitstrings – low bit widths

• Quantified with encoding efficiency: 𝜂 =
𝐻𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔

𝑏𝑖𝑡_𝑤𝑖𝑑𝑡ℎ
 

• Careful when mixing linear and log scaling
• 50% bitstring redundant 4-bit encoding → 3 bits of entropy (not 2!)

• Example: IEEE-754 redundant NaN encodings

Every physical informational bit counts!



Encoding Efficiency in Practice (NaNs only)
Float Type Bit Width Encoding Entropy Encoding Efficiency (%)

IEEE-754 64 63.974 99.960

IEEE-754 32 31.906 99.707

TF32 19 18.957 99.774

IEEE-754 16 15.657 97.854

BF16 16 15.969 99.806

OCP (E4M3) 8 7.992 99.902

IEEE-754 (E4M3)* 8 7.792 97.397

OCP (E2M3) 6 6 100

IEEE-754 (E2M3)* 6 5.167 86.119

IEEE-P3109 Any Ideal 100

Posits Any Ideal 100

Takums Any Ideal 100

* Theoretical – Does not exist.



Data Type Usage Efficiency and Info Theory

• Bits are your currency, and you allocate them as needed
• “Do I really need FP64 for everything?”

• How to answer that analytically: Info theory
• Bitstrings for values beyond needed range go unused → 0 entropy
• Bits allocated towards excess precision are baggage
• Constant values have 0 uncertainty → 0 entropy

• Example: Using FP8 (E4M3) to encode 4-bit integer
• Bit width approximation: 8 physical bits per op to 4 → 2x performance ‘reduction’
• Info Theory: 4 bits of info to 4 → No performance impact

Info theory doesn’t ‘punish’ optimization (unlike bit width approx.)

S E E E E M M M



Another Problem with Mixed Bit Field Mentality

• Float encodings unnecessarily separate value range and precision!
• Ex: BF16 vs FP16 or FP8 E4M3 vs E3M4

• In a purely log or purely integer format, these differences disappear
• Can exactly tradeoff accuracy → range
• Simplifies reasoning about data types



From Quantization/Communication
 to Operations



How much does a given operation reduce uncertainty?

• Constant inputs or outputs → None!
• Compile them away

• More output states → More!

• Some states more likely → Less!
• NaNs, overflow, underflow, etc

• Noisy/Error-prone HW → Less!
• Determinism matters

Inputs

Outputs



"The fundamental problem of communication is 
that of reproducing at one point either exactly or 
approximately a message selected at another 
point”                 
– A Mathematical Theory of Communication (Shannon 1948)

- Generalized the concept of communication 
performance
- Allowed for fair and generalized 

performance evaluation

From Quantization/Communication to Operations



Communication: Copies inputs to outputs (identity operation)

Copy



Expand beyond the identity: Computation



Mutual Information (I)
• Measures the ‘shared’ information of 

random variables
• Considers properties of the operation and noise

• ‘Operational’ quantity
• Application and runtime-dependent

Channel Capacity (C) 
• Maximum MI over possible distributions 
• Upper bound/ideal quantity
• Application-agnostic



Info Theory and Computation
• Expand Shannon’s communication performance model

• Identity operator (communication) → Arbitrary operator (computation)
• Mutual info and channel capacity naturally handle this

• Flop/s → Bit/s
• Base Measure: Uncertainty reduction
• Operational: Mutual Information
• Ideal/Peak: Channel capacity

• Enable generalized and fair performance evaluation
• Just like communication has had for >70 years

• Aligns with existing performance metrics

Every informational bit counts 
(for communication, quantization, and computation)



Data Type Channel Capacity Estimation
• Estimate the channel capacity of operations
• Inputs: Every possible combination of 8-bit values
• Outputs: Add/Mult in 8 or 16-bit formats



Incorporate Data Type Utilization Into Tools



Information Roofline
• Extends traditional roofline
• Adds data type utilization

• Needed with today’s innovation
• Every bit counts!

• X-Axis: Arithmetic Intensity

• Unitless 
𝑏𝑖𝑡𝑠𝑐𝑜𝑚𝑝

𝑏𝑖𝑡𝑠𝑐𝑜𝑚𝑚

• Y-Axis: Information Throughput
• Bits of information per second

Either you’re inefficiently using a data type, or you traded accuracy/range for op-throughput.
The information roofline makes this explicit.



Entropy Staircase

• Simplify complex execution choices
• Native pipelines and emulation

• Quantify benefits of emulation
• Ease of ascending/descending 

the entropy staircase
• Posits vs floats
• Traditional ‘mixed’ precision

GEMM on Nvidia H200 GPU
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What could we do now?

• Reframe redundant value encodings with entropy loss
• Measure data type and operation performance with info. theory

• Unifies communication and computation

• Incorporate data type utilization into usable tools
• Information roofline
• Entropy staircase



What could we 
do in the future?



Uncorrectable Noise

• Status quo: Digital computing is nearly lossless
• Data type designers: “We don’t need to care about bit flips.”
• Infs/NaNs/bitfields make bitflips disastrous

• Motivations for accepting error:
• Undervolting: Energy consumption → Error tradeoff
• Space-based datacenters: Radiation causing bit flips

• Shannon capacity of graphs
• Single bit flips: Hypercube

• Could digital encodings look more like neuromorphic spike trains?

Image Source

This is real! 
H100 GPU in space.

https://www.datacenterdynamics.com/en/news/starcloud-1-satellite-reaches-space-with-nvidia-h100-gpu-now-operating-in-orbit/


What could we do next?

• Noise/error-tolerant formats and algorithms
• Variable-width encodings
• Dataflow optimization (hyper-localized data types/operations)
• Compare performance across hardware paradigms

• Quantum
• Neuromorphic
• Analog
• Reversible

There is still room for innovation. 
When will the juice be worth the squeeze?



How will we fairly and generally measure 
computing performance in the future?
• Innovation will continue

• Loss of Moore’s law/Dennard scaling

• Data type and hardware variety will grow
• How many asterisks is too many?

• *Flop/s in FP32, with sparsity, using tensor cores, emulated with Ozaki scheme 1 using two slices of Int8

• Export controls need a fundamental grounding
• HPC + Quantum/Neuromorphic/Analog/Reversible systems 

We need to innovate in performance measurement and 
tooling to capture the evolving hardware and data types.



Information Theory 
Enables a Useful and 
General Framework 

for Computing 
Performance

arxiv.org/pdf/2508.05621

mhawkins60@gatech.edu

richie@cc.gatech.edu

Every informational bit counts!

4-page preprint: 
arxiv.org/pdf/2508.05621

mhawkins60@gatech.edu
richie@cc.gatech.edu

https://arxiv.org/pdf/2508.05621
mailto:mhawkins60@gatech.edu
mailto:richie@cc.gatech.edu


Bonus Slides!



Aspects Information Theory Explicitly Ignores

• Ease of physical implementation 
• Semantics and error analysis
• Reproducibility



Max Relative Error and Logarithmic Encodings
• Logarithmic encodings are optimal* 

• …if using max relative error on a bounded interval

"Weber-Fechner Law and the Optimality of the Logarithmic Scale" (2010)

https://link.springer.com/article/10.1007/s11023-010-9221-z
https://link.springer.com/article/10.1007/s11023-010-9221-z
https://link.springer.com/article/10.1007/s11023-010-9221-z




(Computer) Arithmetic

• What is the ‘freedom’ or set of potential values of variable x?
• 𝑥 ∈ 𝑅

• Mathematician: If 𝑥 ∈ 𝑅, infinitely many values!
• Hardware designer: If stored in FP64, ~264 states
• HPC practitioner: [-1000, 1000] but mostly close to zero

• “All models are wrong. Some are useful”
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